Космос. Иллюстрированная история астрономии и космологии - Джон Норт. Страница 29

alt="" src="images/b00000835.jpg"/>

45

Точное изображение модели Евдокса в применении к Юпитеру. Представлен вид трехмерной траектории в перспективе.

Проще всего получить доказательство постоянства длины отрезка CD, используя свойства эллипса, но, рассматривая соответствующую часть диаграммы в трех измерениях, несложно провести доказательство, основанное на отношении сторон подобных треугольников. Это легче, чем осуществить первичную визуализацию; и уж точно легче, чем доказать теорему о параболическом листе. Я бы хотел только добавить, что фокус этой параболы является четвертой частью расстояния от A до F.

Здесь мы имеем дело с задатками впечатляющей геометрической модели планетного движения, но, как это ни прискорбно, она, если брать ее в чистом виде, обладает рядом существенных недостатков. Иногда истина искажается. Неверно будет полагать, будто все витки попятного движения планет идентичны друг другу (как показано на ил. 42); неверно и то, что смещение планеты по широте обязательно должно быть значительным. Попятные движения Сатурна и Юпитера могут быть довольно правдоподобно представлены без поправок для широты (см. ил. 45 для Юпитера). К сожалению, если не вводить добавочных сфер, в этой модели можно свободно менять только два основных параметра: относительные скорости по гиппопеде и самой гиппопеды; и размеры гиппопеды, зависящие от наклона вращающейся сферы. Этих параметров явно недостаточно для согласования модели с действительными движениями Марса, Венеры или Меркурия. Если правильно задать скорости, то длина дуги попятного движения даст чудовищную ошибку, и наоборот.

С современной точки зрения относительные скорости по гиппопеде и самой гиппопеды зависят как от самих планет, так и от угловой скорости Земли при ее обращении вокруг Солнца, а размер гиппопеды по отношению к сфере зависит от относительных размеров планетных орбит при их вращении вокруг Солнца, включая нашу планету. Не углубляясь в детали, заметим следующее: в первом случае факты, очевидно, могут потребовать движение самой гиппопеды с такой высокой скоростью по сравнению со скоростью находящейся на ней планеты, что фаза попятного движения окажется просто нереализуемой. Именно это и происходит в упомянутых примерах. И во втором случае, если мы зафиксируем в нашей модели длину дуги попятного движения в строгом соответствии с наблюдениями, это вынудит нас принять как следствие получившуюся гиппопеду, независимо от того, какой будет ее ширина. Дело не только в ее чрезмерной величине для Марса и Венеры, но еще и в том, что в этом случае планетное движение по широте имеет весьма отдаленное отношение к орбитальным размерам. Это обусловлено преимущественно расположением планетных орбит, включая орбиту Земли, в близких друг к другу, но разных плоскостях.

КОСМОЛОГИЯ АРИСТОТЕЛЯ

По поводу моделей Евдокса существует много вопросов, оставшихся без ответа, или вовсе не имеющих ответа, и они касаются не только мотивов, понудивших его создать свою систему. Поскольку местом, где он учительствовал, была малоазийская греческая колония (Кизик находится на южном побережье Мраморного моря, к юго-востоку [через море] от современного Стамбула), не исключено, что ему были знакомы астрологические и религиозные аспекты астрономического знания. Однако к тому времени интеллектуальные предпочтения греков уже не совпадали с предпочтениями их азиатских соседей. Вероятно, греки не воспринимали поклонение звездам как нечто абсолютно враждебное, но в их религии этим вопросам отводилась второстепенная роль, как, собственно, и вопросам поклонения Солнцу и Луне, хотя у них и были соответствующие божества, персонифицированные в Гелиосе и Селене. Когда великий поэт и драматург Аристофан, умерший примерно тогда же, когда родился Евдокс, характеризовал различие между религией греков и иноземцев, он отмечал, что если последние обожествляли Солнце и Луну, то греки совершали подношения персонифицированным богам – таким, как Гермес. Эллинистическая религиозная традиция долгое время находилась в стороне от бесхитростных древних небесных религий, хотя спустя несколько столетий после возникновения восточной астрологии этот тренд поменялся.

Во времена Евдокса философы, не смущаясь, включали небесные тела в свои пантеоны. К ним, считал Пифагор, нужно относиться как к божествам, а Платон признавался, что был потрясен атеистическим утверждением Анаксагора, будто Солнце – это горящая масса, а Луна подобна Земле. Платон полагал: звезды – это видимые изображения богов, порожденные всевышним и вечным Богом. Бога больше не существовало как небесной религии простолюдинов, но Он стал религией интеллектуалов-идеалистов, и благодаря усилиям многочисленных последователей, многие из которых были христианами, представления Платона о небесах оказались весьма влиятельными. Даже его оппонент Аристотель отстаивал идею о божественном происхождении звезд, представляя их как вечное вещество, находящееся в неизменном движении. Конечно, это божества, но все это совершенно не похоже на халдейские доктрины, претендующие на предсказание по небесным знакам жизни и смерти народов и отдельных людей, а также погоды и всего с ней связанного.

Мы не можем сказать с определенностью, каковы суждения Евдокса по этим вопросам, но вряд ли можно сомневаться в том, что в своей астрономической теории он был движим главным образом интеллектуальным удовольствием геометра – тем ресурсом, весомость которого часто недооценивается многими социальными историками. Хотя письменное свидетельство римского государственного деятеля и ученого Цицерона в сочинении «О природе богов» является относительно поздним (он умер в 42 г. до н. э.), именно Евдокс, по его мнению, утверждал: «Не следует верить халдеям, которые предсказывают и размечают жизнь каждого человека по дню его рождения». Во времена Цицерона римский мир вполне трезво относился к практикам такого рода, и исходя из этого многие считали эту ссылку анахроничной, однако нет никаких причин, из которых следует, что это было именно так. В действительности, она могла быть взята из источника, содержащего отсылку к способам неастрономического предсказания человеческой жизни, поскольку у вавилонян существовали технические приемы, позволяющие делать это, и они были известны в Египте задолго до Евдокса, опиравшегося только на календарь. Однако если дело обстояло именно таким образом, то это лишает силы аргумент, согласно которому Евдокс сознательно отвергал астрологию в ее наиболее известных формах.

Каковы бы ни были его мотивы, мы не можем уверенно судить об успешности всех его достижений, когда сравниваем их с более поздними астрономическими изысканиями и с устремлениями вавилонян. Тот факт, что мы способны подогнать движения Юпитера и Сатурна к предложенной им модели, не означает, будто сам Евдокс делал это с такой же точностью. У нас легко получается менять параметры этих конструкций, например изменяя скорости несущей и несомой сфер, но другие – те, кто жил в античные времена, – не обязательно делали то же самое. Эти действия приводят по большей части к не таким уж приятным последствиям. Среди наиболее любопытных геометрических следствий можно отметить следующее: в базовой системе, состоящей из двух сфер, удвоение угловой скорости несущей сферы по отношению к скорости несомой сферы даст в итоге кривую, которая будет являться обычной окружностью, наклоненной в сторону, противоположную наклону экватора несомой сферы. Возможность появления таких вариантов должна внушить нам осторожность в отношении спекуляций на тему истинных причин следующего шага в развитии общей теории, сделанного Каллиппом из Кизика около 330 г. до н. э.

Каллипп был учеником Полемарха, а тот, в свою очередь, учился у Евдокса; он последовал за Полемархом в Афины, где остановился у Аристотеля, для «исправления и дополнения с помощью Аристотеля открытия Евдокса». Так свидетельствует Симпликий, сообщающий нам, что Каллипп увеличил количество сфер, добавив по две для Солнца и Луны и по одной на каждую планету, кроме Юпитера и Сатурна. Именно эти планеты – та самая пара планет, которая, как мы сами могли убедиться, подходит нам наилучшим образом – в достаточной мере